Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid

نویسنده

  • I. Mudawar
چکیده

An experimental study of boiling heat transfer from a simulated microelectronic component immersed in a stagnant pool of the dielectric Fluorinert (FC-72) is presented. Various enhancement surfaces were attached to an electrically heated copper calorimeter bar having a vertically oriented heat transfer surface area of 12.7x12.7mm. A number of enhancement schemes aimed at a reduction oftheincipience temperature overshoot were tested, employing various arrangements of fins, studs, grooves, and vapor-trapping cavities. Atmospheric pressure testing revealed a variation in the magnitude of boiling curve incipience temperature excursion as a function of both macroand microcharacterization of the surface geometry and initial conditions (pressure and temperature history) prior to boiling. Increased incipience temperatures accompanied prolonged periods of nonboiling. It is assumed that this is due to vapor embryos within surface cavities collapsing to smaller radii. Large artificially created cavities (0.3 mm diameter) were found incapable of maintaining a stable vapor embryo for time periods greater than 10 min. In comparison to flat surfaces, low-profile surface geometries having a structure scale of the order of one bubble departure diameter resulted in significant enhancement of nucleate boiling while drilled surfaces had minimal effectiveness. Surf ace finish and artificial cavities had no effect on CHF, but levels of critical heat flux computed on base area were strongly dependent on macro geometry, due in part to increased surface area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Investigation of Small Diameter Two - Phase Closed Thermosy - phons Charged with Water , FC - 84 , FC - 77 & FC - 3283

An experimental investigation of the performance of thermosyphons charged with water as well as the dielectric heat transfer liquids FC-84, FC-77 and FC-3283 has been carried out. The copper thermosyphon was 200 mm long with an inner diameter of 6 mm, which can be considered quite small compared with the vast majority of thermosyphons reported in the open literature. The evaporator length was 4...

متن کامل

Single- and Two-Phase Convective Heat Transfer From Smooth and Enhanced Microelectronic Heat Sources in a Rectangular Channel

Experiments have been performed to assess the feasibility of cooling microelectronic components by means of single-phase and two-phase forced convection. Tests were conducted using a single heat source flush mounted to one wall of a vertical rectangular channel. An inert fluorocarbon liquid (FC-72) was circulated upward through the channel at velocities up to 4.1 m/s and with subcooling up to 4...

متن کامل

Subcooled Pool Boiling Experiments on Horizontal Heaters Coated With Carbon Nanotubes

Pool boiling experiments were conducted with three horizontal, flat, silicon surfaces, two of which were coated with vertically aligned multiwalled carbon nanotubes (MWCNTs). The two wafers were coated with MWCNT of two different thicknesses: 9 m (Type-A) and 25 m (Type-B). Experiments were conducted for the nucleate boiling and film boiling regimes for saturated and subcooled conditions with l...

متن کامل

Parametric Inwestigation Into the Effects of Pressure, SubcooIing3 Surface Augmentation and Choice of Coolant on Pool Boiling in the Design of Cooling Systems for High-Power-Density Electronic Chips

A high power electronic chip was simulated experimentally to investigate upper cooling capabilities using a variety of pool boiling enhancement techniques. Parametric effects of system pressure, subcooling, surface augmentation, and choice of coolant on boiling heat transfer from a vertical 12.7'x 12.7 mm flat surface were examined. The two fluorocarbon coolants tested, FC-72 and FC-87, resulte...

متن کامل

Immersion-Cooled Standard Electronic Clamshell Module: A Building Block for Future High- Flux Avionic Systems

An 820-Watt clamshell module was fabricated and tested in order to assess the feasibility of cooling future high heat flux avionic hardware via subcooled phase change. One half of the module was constructed from aluminum 7075-T6 and populated with 16 heat sources simulating microelectronic chips. The other half was substituted with a transparent plastic cover to facilitate optical access to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008